a2 United States Patent

Zalewski

US009123008B2

US 9,123,008 B2
Sep. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

BUILDABLE PART PAIRS IN AN
UNCONFIGURED PRODUCT STRUCTURE

Inventor: Zbigniew Zalewski, Mountain View, CA
(US)

Assignee: Siemens Product Lifecycle
Management Software Inc., Plano, TX
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 661 days.

Appl. No.: 13/483,360

Filed: May 30, 2012

Prior Publication Data
US 2013/0325365 Al Dec. 5, 2013
Int. CI.
G06Q 50/04 (2012.01)
G06Q 10/06 (2012.01)
GOGF 17/50 (2006.01)
GOGF 17/00 (2006.01)
G06Q 30/06 (2012.01)
GO6K 9/62 (2006.01)
U.S. CL
CPC G06Q 10/0631 (2013.01); GOGF 17/50

(2013.01); GOGF 17/60 (2013.01); GO6Q
30/0621 (2013.01); G06Q 50/04 (2013.01);
GO6K 9/6218 (2013.01)
Field of Classification Search

CPC ... GO6F 17/50; GO6F 17/30713; G0O6Q 10/06;
GO06Q 10/087; G06Q 30/0621; GO6K 9/6226
USPC i 341/107; 702/33; 700/95

See application file for complete search history.

CH=TURBO

®

CH=SUPER

CH!=SUPER

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0171829 Al 9/2003 Fisher et al.

2003/0204527 Al* 10/2003 Callahan 707/104.1
2004/0140976 Al* 7/2004 345/419
2007/0055638 Al* 3/2007 Kaupetal 705/400
2008/0010620 Al 1/2008 Moeller et al.

2008/0114719 Al* 5/2008 Andersonetal. 7072
2008/0162379 Al* 7/2008 Weileretal. 705/400
2009/0070368 Al* 3/2009 Callahan 707/102
2010/0114355 Al* 5/2010 Harashimaetal. 700/107
2010/0241300 Al 9/2010 Aekka et al.

2011/0225070 Al 9/2011 Johnson et al.

OTHER PUBLICATIONS

PCT Search Report dated Nov. 26, 2013, for PCT/US2013/040233.
(9 pages).

* cited by examiner

Primary Examiner — John Breene
Assistant Examiner — Christine Liao

(57) ABSTRACT

Systems and methods for identifying unbuildable part pairs in
product data management (PDM) systems. A method
includes receiving a product structure having a plurality of
nodes with variant conditions. The method includes building,
by the client PDM system, a variant condition forest (VCF)
corresponding to the product structure and selecting a pair of
nodes in the product structure. The method includes deter-
mining, using the VCF, whether the variant conditions of each
of'the selected nodes are satisfiable both separately and at the
same time, and if not, marking the selected pair of nodes as
unbuildable. The method includes adding the unbuildable
pair of nodes to an unbuildable pairs list. The method includes
performing a clearance analysis process on the product struc-
ture, without processing unbuildable pairs on the unbuildable
pairs list, and storing the results of the clearance analysis

process.

20 Claims, 9 Drawing Sheets

w2011

IN<2015

U.S. Patent Sep. 1, 2015 Sheet 1 of 9 US 9,123,008 B2
FIG. 1
100
102 104 108 140 11
/ / / [{
CACHE/ GRAPHICS
PROCESSOR CACHE] MEMORY IS 1 DISPLAY
\
108

1 ExpaNSIONS 18~ LN rwaNWiF

BUS INTERFACE ADAPTER

1§
) T 1%
KEYBOARD/
AUDIO DISK
MOUSE 1/0 ADAPTER

ADAPTER Rorses CONTROLLER \

\ \ \

124 118 12 et >

140
STORAGE

\
126

U.S. Patent Sep. 1, 2015 Sheet 2 of 9 US 9,123,008 B2

FIG. 2

E-V8

CH=TURBO

)

CH!=SUPER

19

CH=SUPER

IN>2011

O® ® @

IN<2015

U.S. Patent Sep. 1, 2015 Sheet 3 of 9 US 9,123,008 B2

FIG. 3

@ E-L4 " "
CH=TURBO
CHI-SUPER
®
CH-SUPER IN-2011

IN<2015

U.S. Patent

Sep. 1, 2015 Sheet 4 of 9
FIG. 4
PRODUCT VARIANT
STRUCTURE TREE CONDITION
NODES FOREST NODE
1 NULL
2 NULL
3 NULL
4 2
3 1
b 1
1 1
8 2
9 3
10 3
11 4
12 4
13 4
14 1
15 1
16 1
17 b
18 10
19 10
20 8
21 9

US 9,123,008 B2

U.S. Patent Sep. 1, 2015 Sheet 5 of 9

FIG. 5

205~

RECEIVE UNCONFIGURED PRODUCT STRUCTURE

|

510~

BUILD VARIANT CONDITION FOREST

!

545~

===t

SELECT PRODUCT STRUCTURE TREE NODE PAIR
FOR CHECKING.

US 9,123,008 B2

!

520~

DETERMINE SATISFIABILITY OF SELECTED
PRODUCT STRUCTURE TREE NODE PAIR

FALSE

|

330~

DETERMINE SATISFIABILITY IN THE TWO-LEVEL
SATISFIABILITY CACHE

FALSE

|

23~

DETERMINE SATISFIABILITY OF INDIVIDUAL
VARIANT CONDITION FOREST NODES

FALSE

1TRUE

DETERMINE SATISFIABILITY OF A VARIANT
CONDITION FOREST NODE PAIR

FALSE

TRUE

20~

MARK SELECTED PRODUCT STRUCTURE
NODE PAIR AS UNBUILDABLE

|

M~

ADD UNBUILDABLE PAIRS TO LIST

550~

PERFORM CLEARANCE ANALYSIS OF THE PRODUCT
STRUCTURE WHILE EXCLUDING PAIRS FROM THE
UNBUILDABLE PAIR LIST AND SAVE THE RESULTS

U.S. Patent

Sep. 1, 2015 Sheet 6 of 9

FIG. 6

MAP NODES TO VARIANT CONDITION FOREST

| -603

l

YES

ANY VARIANT CONDITION FOREST NODES NULL?

|_-610

l

SELECT NODES IN VARIANT CONDITION FOREST

|_~620

l

623~

ARE NODES SATISFIABLE?

NO

US 9,123,008 B2

lYES

B3~

YES

REMAINING PAIRS?

B30~

lno

RETURN FALSE AS
SATISFIABILITY VALUE

615~

RETURN TRUE AS SATISFIABILITY VALUE

U.S. Patent

Sep. 1, 2015 Sheet 7 of 9

FIG. 7

705~

IS SATISFIABILITY KNOWN?

YES

US 9,123,008 B2

lNO

710~

DETERMINE SATISFIABILITY

l

715~

SET KNOWN SATISFIABILITY BIT

l

720~

SET SATISFIABILITY BIT

l

125~

RETURN SATISFIABILITY VALUE (TRUE OR FALSE)

U.S. Patent

Sep. 1, 2015 Sheet 8 of 9

FIG. 8

805~

IS VARIANT CONDITION SATISFIABLE?

lYES

NO

ANCESTORS?

lYES

B25~

IS PARENT SATISFIABLE?

lYES

830~

SELECT NODE AND ANCESTOR PAIR

l

83~

IS PAIR SATISFIABLE?

lYES

YES

OTHER NODE/ANCESTOR PAIRS?

lNO

RETURN TRUE

US 9,123,008 B2

NO

|_-815
NO

810
| I
NO
- RETURN FALSE

840
820

U.S. Patent Sep. 1, 2015 Sheet 9 of 9 US 9,123,008 B2

FIG. 3

305~ NO
ARE NODES SATISFIABLE?

lYES

COMMON PARENT?

lYES

320~ "
IS PARENT SATISFIABLE?

YES
925
{
N PARENT NODE PAIR SATISFIABLE? N
lYES 910
| I
N AL NODE/OPPOSTTE ANCESTOR PATRS |0
SATISFIABLE? — RETURN FALSE
lYES
935
. RETURN TRUE -

US 9,123,008 B2

1
BUILDABLE PART PAIRS IN AN
UNCONFIGURED PRODUCT STRUCTURE

TECHNICAL FIELD

The present disclosure is directed, in general, to computer-
aided design, visualization, and manufacturing systems,
product lifecycle management (“PLM”) systems, and similar
systems, that manage data for products and other items (col-
lectively, “Product Data Management” systems or PDM sys-
tems).

BACKGROUND OF THE DISCLOSURE

PDM systems manage PLM and other data. Improved sys-
tems are desirable.

SUMMARY OF THE DISCLOSURE

Various disclosed embodiments include systems and meth-
ods for improved PDM processes, including systems and
methods for identifying unbuildable part pairs. A method
includes receiving a product structure having a plurality of
nodes with variant conditions. The method includes building,
by the client PDM system, a variant condition forest (VCF)
corresponding to the product structure and selecting a pair of
nodes in the product structure. The method includes deter-
mining, using the VCF, whether the variant conditions of each
of'the selected nodes are satisfiable both separately and at the
same time, and if not, marking the selected pair of nodes as
unbuildable. The method includes adding the unbuildable
pair of nodes to an unbuildable pairs list. The method includes
performing a clearance analysis process on the product struc-
ture, without processing unbuildable pairs on the unbuildable
pairs list, and storing the results of the clearance analysis
process.

The foregoing has outlined rather broadly the features and
technical advantages of the present disclosure so that those
skilled in the art may better understand the detailed descrip-
tion that follows. Additional features and advantages of the
disclosure will be described hereinafter that form the subject
of'the claims. Those skilled in the art will appreciate that they
may readily use the conception and the specific embodiment
disclosed as a basis for modifying or designing other struc-
tures for carrying out the same purposes of the present dis-
closure. Those skilled in the art will also realize that such
equivalent constructions do not depart from the spirit and
scope of the disclosure in its broadest form.

Before undertaking the DETAILED DESCRIPTION
below, it may be advantageous to set forth definitions of
certain words or phrases used throughout this patent docu-
ment: the terms “include” and “comprise,” as well as deriva-
tives thereof, mean inclusion without limitation; the term “or”
is inclusive, meaning and/or; the phrases “associated with”
and “associated therewith,” as well as derivatives thereof,
may mean to include, be included within, interconnect with,
contain, be contained within, connect to or with, couple to or
with, be communicable with, cooperate with, interleave, jux-
tapose, be proximate to, be bound to or with, have, have a
property of, or the like; and the term “controller” means any
device, system or part thereof that controls at least one opera-
tion, whether such a device is implemented in hardware,
firmware, software or some combination of at least two of the
same. [t should be noted that the functionality associated with
any particular controller may be centralized or distributed,
whether locally or remotely. Definitions for certain words and
phrases are provided throughout this patent document, and

10

15

20

25

30

35

40

45

50

55

60

65

2

those of ordinary skill in the art will understand that such
definitions apply in many, if not most, instances to prior as
well as future uses of such defined words and phrases. While
some terms may include a wide variety of embodiments, the
appended claims may expressly limit these terms to specific
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclo-
sure, and the advantages thereof, reference is now made to the
following descriptions taken in conjunction with the accom-
panying drawings, wherein like numbers designate like
objects, and in which:

FIG. 1 depicts a block diagram of a data processing system
in which an embodiment can be implemented;

FIG. 2 shows an example of a product structure with textual
variant conditions in accordance with disclosed embodi-
ments;

FIG. 3 depicts a Variant Condition Forest corresponding to
the product structure tree of FIG. 2, in accordance with dis-
closed embodiments;

FIG. 4 illustrates the node mapping from the product struc-
ture tree of FIG. 2 to the VCF of FIG. 3, by node number, in
accordance with disclosed embodiments; and

FIGS. 5-9 depict flowcharts of processes in accordance
with disclosed embodiments.

DETAILED DESCRIPTION

FIGS. 1 through 9, discussed below, and the various
embodiments used to describe the principles of the present
disclosure in this patent document are by way of illustration
only and should not be construed in any way to limit the scope
of the disclosure. Those skilled in the art will understand that
the principles of the present disclosure may be implemented
in any suitably arranged device. The numerous innovative
teachings of the present application will be described with
reference to exemplary non-limiting embodiments.

The determination of nonbuildable and buildable part pairs
in an unconfigured product structure, such as a product Bill of
Materials (“BOM?”) structure, is important in performing the
clearance analysis of large digital product models. The “prod-
uct structure” refers to a data structure that represents a prod-
uct. The unconfigured product is the union of all product
variants for the product as represented in the structure. “Non-
buildable” part pairs of the unconfigured model are such part
pairs that do not exist in any product variants. That is, any
variant may include one or the other of the two parts, but no
variant includes both of those two parts, so the “pair” are
exclusive of each other.

The choice of the unconfigured product for the scope of the
clearance analysis is driven by the requirement of complete-
ness of the analysis. A choice of a subset of variants of a
product may lead to omissions of valid clearance issues. In
order to make such a complete analysis practical, nonbuild-
able part pairs within the model need to be identified and
excluded from the clearance analysis. Otherwise, non-exis-
tent part pair relationships are analyzed with no added value
while increasing the infrastructure cost and the time to com-
pute. More importantly, engineers and designers are required
to evaluate irrelevant clearance incidents, which is costly and
unnecessary.

Nonbuildable part pairs can be identified and excluded
from the clearance analysis by employing two conventional
mechanisms.

US 9,123,008 B2

3

A first conventional approach relies on the creation and
querying of the pair exclusion rulebase referencing attributes
of'nodes of the product structure. This approach requires that
the rulebase be created and maintained outside of a PDM
system, solely in support of the clearance analysis, as a sepa-
rate model, usually reflecting a subset of the variant model
hosted by a PDM system. This mechanism, while adopted for
large models, calls for a duplicate modeling effort that, due to
its complexity, results in an incomplete variant statement
where most, but not all, nonbuildable part pairs are excluded
from the clearance analysis.

A second conventional approach involves querying the
variant model already created and maintained in a PDM sys-
tem. This mechanism builds on the existent PDM system
model in that it provides for complete exclusion of nonbuild-
able part pairs from the clearance analysis. However, the need
for direct interaction with a PDM system and its entire data
model during the clearance analysis, while satisfying general
buildability queries, in be architecturally complex, and there-
fore is difficult to deploy and operate. Such an approach is
also impractically slow in the case of large models.

Disclosed embodiments include systems and methods that
can identify nonbuildable part pairs in the clearance analysis
computer system based on the textual representation of vari-
ant conditions. These variant conditions are attributes of a
textual representation of the product structure of an uncon-
figured product extracted from a PDM system. Disclosed
embodiments focus on the determination of buildable part
pairs in support of the clearance analysis, and build on exist-
ing clearance analysis systems and methods.

Disclosed embodiments provide distinct technical advan-
tages over conventional systems. For example, disclose
embodiments are significantly faster than conventional pro-
cesses, and the time required to establish nonbuildable part
pairs in support of the clearance analysis becomes insignifi-
cant compared to the time required to perform the complete
clearance analysis, in contrast to dominating the clearance
analysis in prior systems.

Disclosed embodiments also provide the advantage of
architectural simplicity where a single computer application
suffices to perform variant-aware clearance calculations,
resulting in simpler deployment and operations.

The aforementioned benefits make the variant-aware clear-
ance analysis of large product models practical—fast and
therefore repeatable as needed. A large product model, as
used herein, refers to models having the number of BOM lines
of the order of 10°.

FIG. 1 depicts a block diagram of a data processing system
in which an embodiment can be implemented, for example as
aPDM system or clearance system particularly configured by
software or otherwise to perform the processes as described
herein, and in particular as each one of a plurality of inter-
connected and communicating systems as described herein.
The data processing system depicted includes a processor 102
connected to a level two cache/bridge 104, which is con-
nected in turn to a local system bus 106. Local system bus 106
may be, for example, a peripheral component interconnect
(PCI) architecture bus. Also connected to local system bus in
the depicted example are a main memory 108 and a graphics
adapter 110. The graphics adapter 110 may be connected to
display 111.

Other peripherals, such as local area network (LAN)/Wide
Area Network/Wireless (e.g. WiFi) adapter 112, may also be
connected to local system bus 106. Expansion bus interface
114 connects local system bus 106 to input/output (I/O) bus
116. I/O bus 116 is connected to keyboard/mouse adapter
118, disk controller 120, and I/0 adapter 122. Disk controller

10

15

20

25

30

35

40

45

50

55

60

65

4

120 can be connected to a storage 126, which can be any
suitable machine usable or machine readable storage
medium, including but not limited to nonvolatile, hard-coded
type mediums such as read only memories (ROMs) or eras-
able, electrically programmable read only memories (EE-
PROMs), magnetic tape storage, and user-recordable type
mediums such as floppy disks, hard disk drives and compact
disk read only memories (CD-ROMs) or digital versatile
disks (DVDs), and other known optical, electrical, or mag-
netic storage devices.

Also connected to I/O bus 116 in the example shown is
audio adapter 124, to which speakers (not shown) may be
connected for playing sounds. Keyboard/mouse adapter 118
provides a connection for a pointing device (not shown), such
as a mouse, trackball, trackpointer, etc.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 1 may vary for particular imple-
mentations. For example, other peripheral devices, such as an
optical disk drive and the like, also may be used in addition or
in place of the hardware depicted. The depicted example is
provided for the purpose of explanation only and is not meant
to imply architectural limitations with respect to the present
disclosure.

A data processing system in accordance with an embodi-
ment of the present disclosure includes an operating system
employing a graphical user interface. The operating system
permits multiple display windows to be presented in the
graphical user interface simultaneously, with each display
window providing an interface to a different application or to
a different instance of the same application. A cursor in the
graphical user interface may be manipulated by a user
through the pointing device. The position of the cursor may be
changed and/or an event, such as clicking a mouse button,
generated to actuate a desired response.

One of various commercial operating systems, such as a
version of Microsoft Windows™, a product of Microsoft
Corporation located in Redmond, Wash. may be employed if
suitably modified. The operating system is modified or cre-
ated in accordance with the present disclosure as described.

LAN/WAN/Wireless adapter 112 can be connected to a
network 130 (not a part of data processing system 100), which
can be any public or private data processing system network
or combination of networks, as known to those of skill in the
art, including the Internet. Data processing system 100 can
communicate over network 130 with server system 140,
which is also not part of data processing system 100, but can
be implemented, for example, as a separate data processing
system 100.

One technique for a clearance process includes steps of
loading the appropriate data on a local system for performing
the clearance analysis. In particular embodiments, this can be
performed using the TEAMCENTER and TEAMCENTER
VISUALIZATION products by Siemens Product Lifecycle
Management Software Inc. For example, such as process can
extract the product structure of an unconfigured product in the
form of a product tree structure, such as a PLMXML. file, that
references geometric representations of product assemblies
and parts in a PLM system such as implemented by the
TEAMCENTER product. The specific examples below are
made in reference to the TEAMCENTER product, but apply
to similar processes of any PDM system.

Such a process can preload a cache so that all geometric
representations referenced by the PLMXML. file are stored as
local files, and can modify the PLMXML. file so it references
local data rather than TEAMCENTER objects. The local files
can be, for example, in the “JT” file format known to those of
skill in the art.

US 9,123,008 B2

5

The process can then perform a clearance analysis on the
PLMXML file, and in doing so, can access a clearance
requirements rulebase and a design context database that acts
as the source of part-pair buildability knowledge.

Various embodiments described herein provide additional
and alternate capabilities and processes. In various embodi-
ments, variant conditions such as BOMLine properties are
included in the PLMXML file as attributes of nodes of the
product structure. The clearance process can then determine
the part pair buildability based on the variant condition infor-
mation determined from the content of the PLMXML file. In
particular, in various embodiments, there is no need for part
pair buildability queries against a design context database as
in other systems. As such, disclosed embodiments only need
a single application and tier to answer part pair buildability
questions. This is an architecturally simpler solution than
other approaches.

Disclosed embodiments can identify buildable and non-
buildable part pairs on the client system rather than on the
server side, by using a client application/process with respect
to a PDM server system that maintains the entire BOM struc-
ture. The client system can treat the determination of build-
able part pairs as a satisfiability question of Boolean expres-
sions for wvariant conditions. Furthermore, various
embodiments divide the entire task of determining the satis-
fiability of the Boolean product of all the variant conditions
affecting given part pair into a number of smaller tasks of the
determination of satisfiability of variant condition pairs. “Sat-
isfiability” refers to a determination as to whether the variant
conditions, or combination of variant conditions, is capable of
being satisfied in the context of the BOM structure, as
opposed to situations, for example, where the variant condi-
tions directly conflict so that that combination of variant
conditions, such as defined by a part pair, can never be satis-
fied.

A process in accordance with disclosed embodiments can
include parsing textual variant conditions into directed graphs
of their terms and decomposing the variant conditions into
disjunctive normal form (DNF), which enables an efficient
solution to the determination of whether a pair of variant
conditions can be satisfied. Disclosed embodiments not only
determine if an individual variant condition or a pair of vari-
ant conditions can be satisfied, but also include novel tech-
niques for determining the buildability of part pairs based on
the whether pairs of variant conditions can be satisfied and on
the topology of individual variant conditions within the prod-
uct structure.

Disclosed embodiments can initially determine whether
individual unique variant conditions can be satisfied. In most
cases, a BOM structure will not intentionally include variant
conditions that cannot be satisfied, but the presence of such
conditions can cause a large amount of wasted processing.
Disclosed embodiment can identify any individual variant
conditions that cannot be satisfied and exclude all product
structure node pairs subjected to those variant conditions
from any further clearance processing.

Disclosed embodiments can also determine whether pairs
of unique variant conditions can be satisfied. After the two
respective variant conditions are expressed in their disjunc-
tive normal forms, a pair of disjunctive normal forms can be
satisfied when at least one of the pairs of implicants of such
expressed respective variant conditions can be satisfied.

Disclosed embodiments can also determine whether vari-
ant conditions with respect to two given nodes of the product
structure can be satisfied.

A product structure as described herein can be represented
as a graph, in particular as a tree where the root of the tree

30

35

40

45

65

6

corresponds to the top node of the product and other nodes
correspond to assemblies and parts of the product.

FIG. 2 shows an example of a product structure represented
as a tree, and in particular shows an example of a product
structure tree with textual variant conditions. Variant condi-
tions are attached to some nodes of such a tree. The set of
variant conditions affecting a particular pair of the product
structure tree nodes is defined by the topology of the tree. The
determination of the buildability of pairs of nodes in the
product structure tree is a complex problem that can be of
quadratic complexity in respect to the cardinality of the prod-
uct structure tree.

In FIG. 2, the overall product can be represented at node 1,
while various ones of the other nodes are associated with
particular variant conditions. A node associated with a variant
condition is subjected to that variant condition. Where a node
is subjected to a variant condition, all of its children nodes are
also subjected to that variant condition. In general, a node
may be subjected to many variant conditions. For example,
node 4 is subjected to the variant condition “E=[.4”, where
“E” is a product option name and “I.4” is an option value, and
sonodes 5, 6, and 7 are all subjected to that variant condition.
Additionally nodes 5, 6, and 7 are subjected to the variant
condition “CH=TURBO”. Variant conditions are arbitrarily
complex Boolean expressions where product option names
are compared to option values. The system can convert those
Boolean expressions to disjunctive normal form.

Disclosed embodiments can use an auxiliary representa-
tion of topological relationships among variant conditions,
referred to herein as a “Variant Condition Forest” (“VCF”).
The Variant Condition Forest is a union of disjoint trees that
consists of nodes in the product structure tree which have
variant conditions while the “lines” of the forest preserve
ancestor-descendant relationships of the product structure
tree.

FIG. 3 depicts a Variant Condition Forest corresponding to
the product structure tree of FIG. 2. The benefit of the creation
of'the VCF is in the fact that the satisfiability questions posed
in the context of the product structure tree can be directly
mapped to satisfiability questions posed in the context of the
VCF. This is true because the VCF is a graph of a significantly
lesser cardinality than the cardinality of the product structure
tree in real-life products.

As shown in FIG. 3, the VCF shows a collection of nodes,
arranged in separate trees, including each of the nodes in the
tree of FIG. 2 that have a specific variant condition associated
with it. Note that therefore there are significantly fewer nodes
in the VCF than in the product structure tree. Node 2 of FIG.
3, with variant condition “E=[.4” corresponds to node 4 of the
tree of FIG. 2, for example, and each of the variant-condition
nodes of FIG. 2 are represented in FIG. 4. Parent-child con-
nections are only recognized where a parent node with a
variant condition in the original tree has a descendant node
with its own variant condition, and these are shown in the
VCF as connected but with any intervening nodes removed if
the intervening nodes do not have a separate variant condi-
tion, as described more specifically below.

By performing buildability checking on the VCEF, the com-
putational effort required to solve the total buildability task is
reduced significantly.

The mapping of the satisfiability queries from the product
structure tree to the VCF is implemented with the assistance
of the mapping between the nodes of the respective graphs.
Nodes of the product structure tree with variant conditions are
mapped to their VCF equivalents. Nodes of the product struc-
ture tree not directly associated with variant conditions but
subjected to at least one variant condition are mapped to VCF

US 9,123,008 B2

7 8
equivalents of their nearest ancestor with a variant condition TABLE 3
attached. Nodes of the product structure tree not subjected to
any variant conditions are mapped to the NULL node and can 1 2 3 4 5 6 7 8 9 VCIndex Ve
be omitted. 1110 11 11 11 11 11 11 1 CH ! = SUPER
The node mapping from the product structure tree of FIG. > 1 } ? } } 1 } } } } } } } g ch :?gII;EBIé
2 to the VCF of FIG. 3, by node number, is presented in FIG. 11 11 10 10 11 4 E=14
4. Node pairs involving the NULL node are always satisfi- 1111011 5 E=L4ORE=V6
able. Additionally, distinct variant conditions are identified 1 } ? } } g Efxg
and ordered (sorted) so they can be referenced efficiently as g IN < 2015
described below. 9 IN >2011
The system can also identify distinct variant conditions and
assign them respective index values. Both Satisfiability Cache levels store satisfiability answers
Table 1 shows an example of a mapping of VCF nodes, as , as twotbit numbers, apdpack th.e answers into bit vectors. The
shown in the example of FIG. 3, to distinct and ordered hlg‘,h bit gfthe tWO-blt. number indicates ,Wheth?r a partlcule}r
variant conditions. satisfiability answer is known. If a satlsﬁ.ablhty answer is
known, the lower bit represents the proper binary answer as to
TABLE 1 Whethe?r or not it is sa.tisﬁable. The ben.eﬁt of thi.s implemen-
tation is a high efficiency of satisfiability queries once the
Variant Condition Distinct Variant Distinct Variant 20 gatisfiability is established. The position of bits of interest in
Forest Node Condition Condition Index the cache bit vectors is computed as a simple arithmetic
1 CH - TURBO 3 expression based on natural numbers assigned to nodes of the
5 E=14 4 VCF nodes and variant conditions for Level 1 and 2, respec-
3 CH = SUPER 2 tively. The computational complexity of such queries is of
4 CH !=SUPER 1 25 order 1. Cardinalities of the VCF and the variant condition set
2 Ef\{: i found in large real life models are still small enough for the
7 E—14O0RE=V6 s Satisfiability Cache to be stored entirely in the main memory.
g IN < 2015 g A clearance analysis application typically poses buildabil-
9 IN > 2011 9 ity/satisfiability questions in terms of nodes of the product
10 E=V8 7 30 structure tree. Those nodes can relate to both parts and assem-
blies. While any node of the product structure can be involved
. . . . in satisfiability queries, often only a subset of nodes is
Various embodiments can also include a Two-Level Satis- involved. In general, not all answers to satisfiability questions
fiability Cache. The benefit of the cache is such that the same expressed in terms of the VCF nodes and in terms of variant
satisfiability questions expressed in terms of the VCF nodes 35 ¢onditions need to be known in order to answer all questions
and satisfiability questions posed in terms of variant condi- posed by the clearance analysis process.
tions themselves are resolved efficiently. These questions are In some cases, the system can evaluate part pairs for their
posed numerous times in support of satisfiability questions inclusion in the clearance analysis process by considering
expressed in terms of the nodes of the product structure tree, possibly maximal branches of the product structure. In par-
are evaluated at most once (in response to the first question) 4° ticular, for each part of the “left-hand” side maximal branches
and just queried otherwise (in response to subsequent ques- of the “right-hand” side are considered first. If a part-branch
tions). This cache stores satisfiability determinations for pair is buildable then part-sub-branch pairs are evaluated
nodes of the VCF and for distinct variant conditions. recursively. If part-branch pair is not buildable then such a
. I pair is not included in the clearance analysis and not investi-
Level 1 of the cache stores answers to satisfiability ques- 45
. . gated at the part-sub-branch level. For example, for node
tions posed in terms of nodes of the VCF. Table 2 §how§ an (part) 10 of FIG. 2, pair 10-4 is buildable and needs to be
example of Level 1 of a completely populated Satisfiability explored further, while pair 10-18 is not buildable and there-
Cache of the Variant Condition Forest of FIG. 3. fore part pairs 10-20 and 10-21 are excluded from the clear-
ance analysis.
TABLE 2 50 In general, not all satisfiability relationships in the product
VCF structure need to be determined in order to establish buildable
1 5 3 4 5 6 7 8 9 10 Node part pairs. The states of Level 1 and Level 2 Satisfiability
Caches after the completion of the analysis of the product
1 } } }8 } 8 } 8 } } } } } 8 } 8 }8 i structure of FIG. 3 are depicted in Tables 4 and 5, respectively.
11 10 11 10 11 10 10 10 3 >3 Satisfiability relationships with no need to be evaluated are
11 11 11 11 10 10 10 4 those with the higher bit set to 0.
11 10 11 10 1010 5 Table 4 shows the Level 1 Satisfiability Cache of the Vari-
It 1L 10 1010 6 ant Condition Forest of FIG. 3 populated in support of the
t } ? } ? } ? ; clearance analysis of the product structure in FIG. 2.
1111 9 60
11 10 TABLE 4
VCF
Level 2 of the cache stores answers to satisfiability ques- 1 2 3 4 5 6 7 8 9 10 Node
tions posed in terms of distinct variant conditions. Table 3 ¢5 1o 10 10 11 11 10 10 10 1
shown an example of Level 2 of a completely populated 00 00 10 11 11 00 00 00 2

Satisfiability Cache of the Variant Condition Forest of FIG. 3.

US 9,123,008 B2

9

TABLE 4-continued
VCF
1 2 3 4 5 6 7 8 9 10 Node
11 10 11 10 10 0010 3
11 11 11 00 00 10 4
11 10 00 00 10 5
11 00 00 10 6
00 00 10 7
11 1111 8
1111 9
11 10

Table 5 depicts the Level 2 Satisfiability Cache of the
Variant Condition Forest of FIG. 3 populated in support of the

clearance analysis of the product structure in FIG. 2.
TABLE 5
1 2 3 4 5 6 7 8 9 VClndex vC
11 1000 11 11 11 00 00 00 1 CH! = SUPER
1100 11 11 11 00 00 00 2 CH = SUPER
11 11 11 11 11 00 00 3 CH = TURBO
11 11 10 10 00 00 4 E=14
11 11 10 00 00 5 E=L4ORE=V6
11 10 00 00 6 E=V6
1111 11 7 E=V8
1111 8 IN <2015
11 9 IN > 2011

FIG. 5 depicts a flowchart of a recursive process to deter-
mine the buildability/satisfiability of product structure tree
nodes and remove unbuildable nodes from a product struc-
ture. This process builds on the creation of the VCF and the
presence of the two-level satisfiability cache. The method is
presented as four actions that can be executed in a recursive
manner, and can include subprocesses illustrated below in
separate flowcharts. As used below, “system” refers to one or
more data processing systems performing actions as
described herein, and can be implemented in particular as a
client PDM data processing system.

The system receives an unconfigured product structure,
such as an unconfigured BOM structure, that includes a plu-
rality of nodes having variant conditions (step 505). In a
preferred embodiment, the system receives the product struc-
ture from a server PDM data processing system. The product
structure can be an entire product BOM structure, or a sub-
structure of the entire product BOM structure. Each node can
represent a part of the product represented by the product
structure.

The system can build a VCF, as described herein, corre-
sponding to the received product structure (step 510). This
step can include initializing a two-level satisfiability cache as
described above.

A product structure tree node pair is selected (step 515).
The selection can be performed, for example, by a clearance
analysis engine generating the list of buildable part pairs, or
otherwise.

The system determines whether the variant conditions of
each of the selected nodes is satisfiable, and whether they are
satisfiable at the same time. If they are not, the selected node
pairis marked as unbuildable and all the affected nodes can be
excluded from the clearance analysis, as described in more
detail below.

The basic action, executed repeatedly by the clearance
analysis engine, is the determination of the satisfiability of a
selected product structure tree node pair (step 520). FIG. 6

10

25

30

40

45

10

shows a flowchart of a subprocess for determining the satis-
fiability of a selected product structure tree node pair.

The system maps the product structure tree nodes to the
VCF nodes (step 605).

If any of the VCF nodes is NULL (step 610), then the
system immediately returns True as the product structure
node pair satisfiability value (step 615).

The system sequentially and conditionally determines the
satisfiability of two individual VCF nodes as well as the
satisfiability of the VCF node pair in the Level 1 cache (select-
ing a first pair of nodes at 620). If any of the satisfiability
values is False (step 625), the system immediately returns
False (step 630). If there are remaining node pairs (step 635),
the process returns to step 620 to select a new pair of nodes. If
not, the system returns True (step 615).

Returning to the process of FIG. 5, if the subprocess
returned False, then the selected product structure node pair is
marked as unbuildable (step 525). Otherwise, the process
continues.

The system also determines satisfiability in the two-level
satisfiability cache (step 530). FIG. 7 depicts a flowchart of a
subprocess for determining satisfiability for the cache. This
action is implemented in the following steps, when applied to
the Level 1 cache or to the Level 2 cache.

The system queries the higher bit of a satisfiability answer
to establish whether the answer is known (step 705). If the
answer is known, the system returns the lower bit of the
satisfiability answer as the Boolean satisfiability value (True
or False) (step 725)

If the answer is not known, then the system computes the
satisfiability (step 710), sets the higher bit of the satisfiability
answer to True (step 715), and sets the lower bit to the com-
puted satisfiability value (step 720). The system returns the
lower bit of the satisfiability answer as the Boolean satisfi-
ability value (True or False) (step 725).

Returning to the process of FIG. 5, if the subprocess
returned False, then the selected product structure node pair is
marked as unbuildable (step 525). Otherwise, the process
continues.

Returning to the process of FIG. 5, the system can deter-
mine the satisfiability of each individual VCF node corre-
sponding to one node of the selected product structure node
pair (step 535). FIG. 8 depicts a flowchart of a process to
determine the satisfiability of an individual VCF node.

The system determines the satisfiability of the variant con-
dition attached to the node by lookup to the Level 2 cache
(step 805). The system returns False if the variant condition is
not satisfiable (step 810).

Ifthe variant condition is satisfiable at step 805, the system
determines if the node has any ancestors in the VCF (step
815). If there are no ancestors in the VCE, the system returns
True (step 820).

Ifthe node does have ancestors in the VCF at step 815, the
system determines the satisfiability of the parent node in the
VCF by lookup to the Level 1 cache (step 825). The system
will return False if the parent node is not satisfiable (step 810).

The system sequentially and conditionally determines the
satisfiability of all combinations of the variant condition of
the input node and variant conditions of the input node ances-
tors in the VCF in the Level 2 cache.

To do so, the system selects a pair of variant conditions that
includes the selected node and one of its ancestors (step 830).
The system determines the satisfiability value for that pair
(step 835). If any of the satisfiability values is False then the
system returns False (step 810). Otherwise, determines if
there are other node/ancestor pairs to be checked (step 840).

US 9,123,008 B2

11

If so, the system returns to step 830 to select a new pair.
Otherwise, the system returns True (step 820).

Returning to the process of FIG. 5, if the subprocess
returned False, then the selected product structure node pair is
marked as unbuildable (step 525). Otherwise, the process
continues.

The system can determine the satisfiability of a pair of VCF
nodes (step 540). FIG. 9 depicts a flowchart of a process to can
determine the satisfiability of a pair of VCF nodes.

The system determines the satisfiability of each of the
individual input nodes by a lookup in the Level 1 cache (step
905). If either of the satisfiability values is False then imme-
diately return False (step 910).

The system determines if the pair of nodes in the VCF has
common parent node (step 915). If so, the system determines
the satisfiability of the parent node in the level 1 cache (step
920). The system returns False if the parent node is not sat-
isfiable (step 910).

The system determines the satisfiability of the parent node
pair in the level 1 cache where the pair of nodes has distinct
parent nodes (step 925). The system returns False if the parent
node pair is not satisfiable (step 910).

The system determines the satisfiability of all combina-
tions of the variant condition of two respective input nodes
and variant conditions of the opposite input node ancestors, in
the VCF, in the Level 2 cache (step 930). If any of the satis-
fiability values is False then the system returns False (910). If
all combinations are tested with no False results, the system
returns True (step 935).

Returning to the process of FIG. 5, if the subprocess
returned False, then the selected product structure node pair is
marked as unbuildable (step 525). The selected product struc-
ture node pair has now been fully checked; the process can
optionally returnto step 515 for another product structure tree
node pair.

The system can add the product structure node pairs that
have been marked as unbuildable to an unbuildable pair list
(step 545). The process can optionally return to step 515 for
another product structure tree node pair.

The system can perform a clearance analysis using the
product structure, excluding any pairs on the unbuildable
pairs list (step 550), and store the clearance analysis results.

Disclosed embodiments include a number of specific tech-
nical advantages over other systems, particularly in determin-
ing of nonbuildable part pairs in PDM client systems. For
example, the uniqueness of variant conditions can be deter-
mined based on the variant condition implicants set rather
than on the textual representations of variant conditions. Fur-
ther, the on-demand satisfiability analysis can be extended to
the parsing and to the decomposition of variant conditions
into the DNF form rather than performing that analysis for all
variant conditions initially. Further, the parsing and the
decomposition of variant conditions into the DNF form can
be performed concurrently, for example in distinct threads.

Of course, those of skill in the art will recognize that, unless
specifically indicated or required by the sequence of opera-
tions, certain steps in the processes described above may be
omitted, performed concurrently or sequentially, or per-
formed in a different order. Steps and operations of the vari-
ous processes can be combined in various embodiments.

Those skilled in the art will recognize that, for simplicity
and clarity, the full structure and operation of all data pro-
cessing systems suitable for use with the present disclosure is
not being depicted or described herein. Instead, only so much
of'a data processing system as is unique to the present disclo-
sure or necessary for an understanding of the present disclo-
sure is depicted and described. The remainder of the construc-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion and operation of data processing system 100 may
conform to any of the various current implementations and
practices known in the art.

It is important to note that while the disclosure includes a
description in the context of a fully functional system, those
skilled in the art will appreciate that at least portions of the
mechanism of the present disclosure are capable of being
distributed in the form of instructions contained within a
machine-usable, computer-usable, or computer-readable
medium in any of a variety of forms, and that the present
disclosure applies equally regardless of the particular type of
instruction or signal bearing medium or storage medium uti-
lized to actually carry out the distribution. Examples of
machine usable/readable or computer usable/readable medi-
ums include: nonvolatile, hard-coded type mediums such as
read only memories (ROMs) or erasable, electrically pro-
grammable read only memories (EEPROMs), and user-re-
cordable type mediums such as floppy disks, hard disk drives
and compact disk read only memories (CD-ROMs) or digital
versatile disks (DVDs).

Although an exemplary embodiment of the present disclo-
sure has been described in detail, those skilled in the art will
understand that various changes, substitutions, variations,
and improvements disclosed herein may be made without
departing from the spirit and scope of the disclosure in its
broadest form.

None of the description in the present application should be
read as implying that any particular element, step, or function
is an essential element which must be included in the claim
scope: the scope of patented subject matter is defined only by
the allowed claims. Moreover, none of these claims are
intended to invoke paragraph six of 35 USC §112 unless the
exact words “means for” are followed by a participle.

What is claimed is:

1. A method for identifying unbuildable part pairs, com-
prising:

receiving, in a client product data management (PDM)

system, a product structure having a plurality of nodes
with variant conditions;

building, by the client PDM system, a variant condition

forest (VCF) corresponding to the product structure;
selecting a pair of nodes in the product structure;
determining, by the client PDM system and using the VCF,
whether the variant conditions of each of the selected
nodes are satisfiable both separately and at the same
time;
marking the selected pair of nodes as unbuildable when the
variant conditions of each of the selected nodes are not
satisfiable either separately or at the same time;

adding the unbuildable pair of nodes to an unbuildable

pairs list; and

performing a clearance analysis process on the product

structure, without processing unbuildable pairs on the
unbuildable pairs list, and storing the results of the clear-
ance analysis process.

2. The method of claim 1, wherein the client PDM system
determines satisfiability of nodes in the VFC forest that cor-
respond to the selected nodes.

3. The method of claim 1, wherein the client PDM system
deter mines the satisfiability of ancestor nodes in the VFC
forest of nodes that correspond to the selected nodes.

4. The method of claim 1, wherein the VCF forestis a union
of disjoint trees that include all nodes in the product structure
tree which have variant conditions.

5. The method of claim 1, wherein satisfiability determi-
nations for nodes of the VCF are stored in a cache.

US 9,123,008 B2

13

6. The method of claim 1, wherein the client PDM system
determines if a common ancestor of nodes in the VCF is
satisfiable.

7. The method of claim 1, wherein the product structure is
an unconfigured bill of materials structure.

8. A client product data management (PDM) system com-
prising:

at least one processor; and

an accessible memory, the client PDM system configured

to:

receive a product structure having a plurality of nodes with

variant conditions;

build a variant condition forest (VCF) corresponding to the

product structure;

select a pair of nodes in the product structure;

determine, using the VCF, whether the variant conditions

of each of the selected nodes are satisfiable both sepa-
rately and at the same time;

mark the selected pair of nodes as unbuildable when the

variant conditions of each of the selected nodes are not
satisfiable either separately or at the same time;

add the unbuildable pair of nodes to an unbuildable pairs

list; and

perform a clearance analysis process on the product struc-

ture, without processing unbuildable pairs on the
unbuildable pairs list, and store the results of the clear-
ance analysis process.

9. The client PDM system of claim 8, wherein the client
PDM system determines satisfiability of nodes in the VFC
forest that correspond to the selected nodes.

10. The client PDM system of claim 8, wherein the client
PDM system determines the satisfiability of ancestor nodes in
the VFC of nodes that correspond to the selected nodes.

11. The client PDM system of claim 8, wherein the VCF
forest is a union of disjoint trees that include all nodes in the
product structure tree which have variant conditions.

12. The client PDM system of claim 8, wherein satisfiabil-
ity determinations for nodes of the VCF are stored in a cache.

13. The client PDM system of claim 8, wherein the client
PDM system determines if a common ancestor of nodes in the
VCF is satisfiable.

5

10

15

20

25

30

35

14

14. The client PDM system of claim 8, wherein the product
structure is an unconfigured bill of materials structure.

15. A non-transitory computer-readable medium encoded
with computer-executable instructions that, when executed,
cause a client product data management (PDM) system to:

receive a product structure having a plurality of nodes with

variant conditions;

build a variant condition forest (VCF) corresponding to the

product structure;

select a pair of nodes in the product structure;

determine, using the VCF, whether the variant conditions

of each of the selected nodes are satisfiable both sepa-
rately and at the same time;

mark the selected pair of nodes as unbuildable when the

variant conditions of each of the selected nodes are not
satisfiable either separately or at the same time;

add the unbuildable pair of nodes to an unbuildable pairs

list; and

perform a clearance analysis process on the product struc-

ture, without processing unbuildable pairs on the
unbuildable pairs list, and store the results of the clear-
ance analysis process.

16. The computer-readable medium of claim 15, wherein
the client PDM system determines satisfiability of nodes in
the VFC forest that correspond to the selected nodes.

17. The computer-readable medium of claim 15, wherein
the client PDM system determines the satisfiability of ances-
tor nodes in the VFC of nodes that correspond to the selected
nodes.

18. The computer-readable medium of claim 15, wherein
the VCF forest is a union of disjoint trees that include all
nodes in the product structure tree which have variant condi-
tions.

19. The computer-readable medium of claim 15, wherein
satisfiability determinations for nodes of the VCF are stored
in a cache.

20. The computer-readable medium of claim 15, wherein
the client PDM system determines if a common ancestor of
nodes in the VCF is satisfiable.

#* #* #* #* #*

